
Learning Exploration Strategies to Solve Real-World Marble Runs

Alisa Allaire1 and Christopher G. Atkeson1

Abstract— Tasks involving complex dynamic interactions re-
main challenging in robotics, because small variations in the
environment can have a significant impact on task outcomes.
For such tasks, learning a single deterministic policy that
performs well across a variety of tasks and uncertain dynamics
is difficult, so we focus on structuring exploration with multiple
stochastic policies based on a mixture of experts (MoE) policy
representation that can be efficiently adapted in the real world.
The MoE policy is composed of stochastic sub-policies that
allow exploration of multiple distinct regions of the action
space (or strategies) and a high-level selection policy to guide
exploration towards the most promising regions. We develop a
robot system to evaluate our approach in a real-world physical
problem solving domain. After training the MoE policy in
simulation, online learning in the real world demonstrates
efficient adaptation within just a few dozen attempts. Our
results confirm that representing multiple strategies promotes
efficient adaptation in new environments and strategies learned
under different dynamics can still provide useful information
about where to look for solutions.

I. INTRODUCTION

Developing intelligent systems with the efficient and
flexible physical reasoning capabilities of humans remains
one of the greatest challenges in robotics. Tasks involving
highly dynamic interactions between multiple objects are
particularly difficult because small, possibly unobservable,
variations in the environment can have a significant impact
on the task outcomes. Prior works have proposed simulation-
based physics puzzles as benchmarks for physical reasoning
that emphasize reasoning about complex interactions over
extended periods of time by allowing actions to be taken
only at the start of a task so actions cannot be re-planned
on-the-fly throughout a task [1], [2]. Because success relies
on reasoning about the outcome based on setting up the
initial state, and not controlling anything after that, the tasks
in these benchmarks are also sensitive to small changes in
initial state. While effective for evaluating general-purpose,
long-term physical reasoning, the simulation-based bench-
marks neglect other properties of real-world systems such as
noisy observations and environment stochasticity that make
reasoning about dynamic interactions difficult.

One contribution of this work is the development of a robot
system to enable evaluation of learning algorithms in a real-
world marble run environment, shown in Fig. 1. Allowing
actions only at the beginning of the task, marble run tasks
are similar to the simulation-based physical reasoning bench-
marks but also incorporate real-world stochasticity which

*This material is based upon work supported by the National Science
Foundation under Grant IIS-1849287

Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
{aallaire, cga}@cmu.edu

Fig. 1: The marble run robot autonomously evaluates learn-
ing algorithms on real-world marble run tasks. (a-b) An
example marble run task (a) and solution (b), where the goal
is to place the curved track so the ball lands in the U-shaped
goal. Stochasticity of the ball’s initial state leads to large
variations in outcome for the same action.

can cause widely varying outcomes for even the same initial
state. Additionally, while our robot runs hundreds of trials
without human intervention, it can take as long as a minute
to setup and execute a single trial, so learning algorithms
evaluated in this domain must perform well under a limited
evaluation budget.

Due to small changes potentially having major effects
on task outcome and the real time duration of marble run
tasks, we focus on learning a structured exploration policy
in simulation that can be efficiently adapted in the real
world. Directly learning a deterministic policy is difficult
due to this parameter sensitivity and the sim-to-real gap. We
choose a policy representation that is stochastic to support
exploration and captures multiple distinct types of solutions
in case the first attempted strategy is not applicable in the
real world. Specifically, we use a mixture-of-experts (MoE)
policy representation that is composed of multiple Gaussian
sub-policies and a high-level selection policy and represents
multiple strategies to achieve the same or similar goals. Our
proposed approach extends advantage-weighted regression
[3], [4] to train an MoE policy from simulated experiences.
While we do not expect the mixture policy trained offline in
simulation to transfer perfectly to the real world, it should
provide a good starting point to perform an online search
for solutions, where the sub-policies represent promising
regions of the action space to explore and the high-level
policy directs the search towards high-reward regions. Our
experiments show that online learning successfully fine-tunes



the mixture of experts policy within a few dozen attempts
in the real world and even exceeds human performance on a
test task. Our results demonstrate that representing multiple
strategies promotes efficient adaptation in new environments
and strategies learned in simulation or under different dy-
namics can still provide useful information about where to
look for solutions.

II. RELATED WORK

Many environments for evaluating physical reasoning ca-
pabilities of learning algorithms have been explored, ranging
from physics-based computer games [5], [6] to specially
designed physical reasoning benchmarks [1], [2], [7], [8].
For evaluating real-world physical reasoning capabilities
beyond prediction and question answering, the most common
application is contact-rich manipulation tasks [9], [10], [11].
In these domains robots usually take actions and receive feed-
back at every time-step, which allows re-planning throughout
a task and reduces the effects of uncertainty or error. The
simulation-based physical reasoning environments Tools [1]
and PHYRE [2] allow actions only at the start of a task
and are effective benchmarks for general-purpose, long-term
physical reasoning. Both PHYRE and Tools define tasks
similar to marble run tasks, which all require placing an
object in a scene so it interacts with other objects to reach a
desired goal state. Unlike the tasks in PHYRE and Tools, our
real-world marble run tasks incorporate challenges of the real
world like noisy observations and environment stochasticity.

We extend advantage-weighted regression (AWR) to mix-
ture of expert policies. AWR formulates a constrained policy
search problem as weighted supervised regression on the
actions, allowing the policy to be easily updated with both
online data and offline data [3], [4]. An earlier instantiation
of this framework incorporates a similar advantage-weighted
policy update [12]. Relative entropy policy search (REPS)
[13] and maximum a posteriori policy optimization (MPO)
[14] are closely related and similarly derived as a constrained
policy search, but using the dual formulation instead.

Policy hierarchies in robot learning are often represented
as options, which are temporally extended actions [15],
[16]. Without temporal abstraction, options are reduced to
components of a mixture distribution that form abstractions
in space. We focus on abstractions in space using a mixture
of experts policy representation [17]. Hierarchical extensions
to both REPS and MPO have been developed [18], [19]
and are similar to ours due to the underlying similarities
between REPS, MPO, and AWR. They focus on learning
hierarchies incrementally from scratch which is hard and
requires imposing additional constraints to learn distinct and
diverse sub-policies. Instead, we formulate the problem in
a simpler way by assuming access to a datatset of prior
experiences to initialize the mixture policy using batched
supervised regression. We show that a simulator generates
useful training data in this domain to stably learn the mix-
ture distribution’s underlying structure, while online learning
adapts the sub-policies and distribution over policies to a
specific task or environment.

III. THE MARBLE RUN ENVIRONMENT

To demonstrate the challenges associated with the marble
run environment, we define a simple task which initially
consists of a rectangular track at the top of the environment
and a U-shaped goal in the bottom half of the environment.
In the initial configuration, a ball released at the top of the
environment, above the rectangular track, will not land in
the goal, as shown in Fig. 1a. The robot must then find a
configuration of the curved track that allows the ball to land
in the goal. At first, this task may seem too easy - many
humans could find a solution within just a few attempts.
However, Fig. 1b shows that, due to slight variations in the
environment, an action that is successful once may not be
every time.

1 2 3 4 5 6 7 8 9 10
Number of Attempts

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 S
uc

ce
ss

 R
at

e

Fig. 2: Average performance
of 5 humans on a marble run
task over 10 attempts.

Therefore, we task the
robot with finding actions
that are always or nearly
always successful, rather
than just finding actions
that worked the one time
they are tried. Prelimi-
nary experiments demon-
strate that even for a sim-
ple task, finding solutions
that are robust to stochas-
ticity in the environment
is challenging even for hu-
mans. Fig. 2 shows the av-
erage performance of 5 humans who were asked to make 10
attempts to solve a marble run task. Initially, all participants
were able to find actions that were somewhat successful.
Small adjustments to the initial object placement usually
produced slightly improved performance, but nearly all par-
ticipants eventually required switching strategies with more
drastic changes to the object placement or angle in order to
find actions more robust to variance in the ball trajectories.

IV. FRAMEWORK FOR STRUCTURED
EXPLORATION

A. Problem Definition

In this paper, we focus on the problem of placing an
additional track in an existing configuration so that the ball
lands in the goal. A marble run task is defined by the
initial configuration of all objects in the scene, including
the ball, goal, and additional track pieces. Only one object
is allowed to be placed before each trial. The full 3D state
of the environment is not observable, so we approximate the
environment as 2D and ignore small out-of-plane movement.
The state s is the initial scene configuration, which concate-
nates each object’s position and orientation. The ith object’s
state is given as si = [x, y, sin(θ), cos(θ)]. Object positions
are expressed relative to the ball’s initial position, which is
fixed across tasks, so the ball’s state is not included. We
consider tasks with the same number and types of objects
so an encoding of object type is not necessary. With tracks
magnetically fixed to a panel, we assume the ball is the only



dynamic object. The action is the position and orientation
of the additional track placement, a = [x, y, sin(θ), cos(θ)].
If different types of objects could be placed, the object type
should also be included in the action. For now, we consider
only one object type for the action.

Reward Function. The reward function for a single trial
is R(s,a) = {1, if success; −dmin otherwise}, where
dmin is the minimum distance between the ball and the goal
along the ball’s trajectory. The reward is 1 for successful
trials to differentiate between true successes and trials where
the ball bounces out of the goal, where dmin = 0 in both
cases. Uncertainty in the real system’s initial state can cause
the outcome to vary significantly across trials from the same
state and action, so the reward is averaged over 6 trials per
action taken in the real world or in a stochastic simulator. We
empirically found 6 trials provides a good trade-off between
minimizing evaluation time and minimizing variance of the
estimated reward.

B. Mixture of Experts (MoE) Policy Representation

To represent knowledge learned from past experiences,
we learn a stochastic policy parameterized as a probabilistic
mixture of experts (MoE) that maps an input state to a
multi-modal distribution of actions. The MoE consists of K
Gaussian “expert” policies {πk}∀k∈{1,...,K} and a “gating”
policy ψ that predicts a categorical distribution over the
experts such that

k ∼ Categorical(ψ(k|s,ϕ)) (1)
a ∼ πk(a|s,θk), (2)

where ϕ and θk are learned parameters for the neural
networks representing ψ and πk. k is the expert model index
sampled from the categorical distribution predicted by ψ and
a is the action sampled from the Gaussian distribution with
mean µk and covariance Σk represented by θk.

C. Learning a Mixture of Experts Policy from (Simulated)
Experience

We generate a dataset representing prior experiences using
a simulated marble run environment by randomly sampling
actions on a set of training tasks until 500 successful and
unsuccessful actions are found for each task. Each sample
is stored in the dataset D as a state-action-reward tuple
(s,a, R(s,a)). We do not expect the mixture policy trained
in simulation to transfer perfectly to the real world, but it
should provide a good starting point to search for potential
solutions.

Expectation Maximization for Mixture of Experts Poli-
cies. We derive a training procedure from the expectation
maximization (EM) algorithm [20]. The EM algorithm esti-
mates the parameters ϕ and θ = {θk}k∈1:K that maximize
the complete log-likelihood of the selection variables {zk}
and actions a given the state s and parameters ϕ and θ.
The selection variable zk is 1 if the kth expert generates or
predicts the action a and 0 otherwise. The E-step calculates
the expected log-likelihood, given as J(ϕ,θ) below, where

w′
k is the probability zk is one given the state and action.

J(ϕ,θ) = E
s,a∼D

[
K∑
k=1

w′
k

(
logπk(a|s,θk)

+ logψk(s,ϕ)
)] (3)

w′
k = P (zk = 1|s,a) = ψk(s,ϕ

′)πk(a|s,θ′k)∑K
j=1 ψj(s,ϕ

′)πj(a|s,θ′j)
(4)

The superscript ′ indicates wk is computed using the
current parameter estimates and is not involved in the gra-
dient calculation. In the standard EM algorithm, the M-step
analytically computes parameters which maximize J(ϕ,θ).
However, there is not a closed-form solution when ψ and
πk are neural networks with non-linear activations as in this
work. We instead use a generalized EM algorithm, where the
M-step performs a gradient step to move J(ϕ,θ) closer to
the maximum [21].

Advantage-Weighted Regression. Using the mixture log-
likelihood in (3), we apply advantage-weighted regression
(AWR), which weights the log-likelihood with the exponen-
tial advantage exp(A

π(s,a)
η ) [3], [4], [12]. The advantage

Aπ(s,a) = R(s,a) − V π(s) is a measure of improvement
based on how the reward of an action compares to the
average reward observed from a state under the current
policy. When the advantage is negative, the weights approach
zero and filter out poorly performing actions. The resulting
advantage-weighted objective function is

J(ϕ,θ) = E
s,a∼D

[
K∑
k=1

w′
k exp

(
Aπ

′
k(s,a)

η

)
(
log πk(a|s,θk) + logψk(s,ϕ)

)]
,

(5)

where η is a Lagrange multiplier associated with constraining
the policy to stay close to the behavior policy πβ that
represents the distribution of data seen so far. Dual gradient
descent can be used to estimate η, but this requires estimating
πβ from the data [19]. We treat η as a fixed hyperparameter,
which has been effective in prior work [3], [4]. Only one
action is taken and the final episode reward is observed
immediately in marble run tasks, so the value function is the
average reward of actions sampled from the current policy at
a specified state. During offline training, we pre-compute the
per-state values as the average reward of actions observed in
the dataset at each state.

D. Online Learning

The mixture policy trained offline in simulation encapsu-
lates prior knowledge about what strategies might work well
in different contexts. When new environments or task config-
urations are encountered, the offline policy is a starting point
from which to perform an online search for robust solutions
in the current context. Expert policies represents promising
regions of the action space to explore. The gating network



directs the search towards the most promising regions (or
policies).

Decomposing the Objective Function with Hard Policy
Updates. As a supervised learning algorithm, advantage-
weighted regression is easily adapted to online learning
by incorporating online samples into policy updates. The
objective function defined in (5) requires indiscriminately
optimizing all sub-policies over batches sampled across the
entire dataset with each update step, where samples are
weighted according to responsibilities w′

k. A soft policy
update shares information between policies and is important
during earlier stages of training to learn a proper division of
the state space. With enough sub-policies, we can assume
a proper state space division is learned after training on
the simulated dataset so benefits of the soft update are
diminished.

Instead, we perform hard policy updates during online
learning by updating expert policies independently using
only data associated with each policy. Performing policy
updates using only the most relevant samples helps sub-
policies quickly specialize to the current task. The individual
update rules can be derived by setting w′

k to 0 or 1 in
(5), where 1 is assigned to the component with the highest
probability P (zk = 1|s,a). We decompose (5) into separate
objective functions for the gating policy and each expert
policy. The objective function for policy k is

J(θk) = E
s,a∼Dk

[
exp

(
Aπ

′
k(s,a)

η

)
log πk(a|s,θk)

]
, (6)

where Dk is a subset of the dataset generated by or associated
with the kth policy. We also decompose the advantage
function. The advantage function for the kth policy is defined
as Aπ

′
k(s,a) = Rωk

(s,a)−Ea∼π′
k
[Rωk

(s,a)]. Similarly, the
gating policy’s objective function is

J(ψ) = E
s,k∼D

[
exp

(
Aψ

′
(s, k)

η

)
logψk(s,ϕ)

]
, (7)

and its advantage function is Aψ
′
(s, k) =

Ea∼π′
k
[Rωk

(s,a)] − Ek∼ψ′ [Ea∼π′
k
[Rωk

(s,a)]]. The gating
policy’s advantage function provides an estimate of how
actions from expert k compare to other experts. A similar
advantage function is defined in hierarchical reinforcement
learning as the advantage over options for determining
option termination criteria [16].

Learning an Approximate Reward Function. During
online learning, the advantage is estimated using learned
reward functions. Learning a single function to approximate
a multi-modal, discontinuous reward function is difficult,
so separate reward functions are associated with each ex-
pert policy. Each approximate reward function Rωk

(s,a) is
trained using only data generated by the associated expert.
During offline training of the policy, the best divisions of
the state-action space are not yet known, so we estimate
the advantage directly from sampled rewards to avoid bias.
After the mixture policy is trained offline, we perform a hard
assignment of samples to the most likely policy indicated

by responsibilities w′
k and Rωk

(s,a) is pre-trained over
the corresponding subset of data, Dk, by minimizing the
mean-squared-error (MSE) between predicted and observed
rewards. An equal number of positive and negative samples is
used in each update for both pre-training the reward functions
and during online learning. Samples are considered positive
if at least half the trials for the action are successful (i.e.
success rate ≥ 0.5). During online learning, each reward
function is updated using both online and offline samples
from the corresponding policy.

Summary of Online Learning Algorithm. We assume the
online learning phase for each new task is initialized with the
same offline policy and dataset. At each iteration of online
learning, an expert policy and action are sampled from the
mixture policy (k ∼ ψ, a ∼ πk). The action is executed and
stored in the dataset as a tuple (s,a, k, R(s,a)). The learned
reward function Rωk

(s,a) associated with the current expert
k is then updated with a batch (sk,ak, R(sk,ak)) ∼ Dk
containing an even mixture of positive and negative samples.
The policy πk is updated with a batch (sk,ak, R(sk,ak)) ∼
Dk using (6) and the gating policy ψ is updated using
(7) with a batch (s,a, k, R(s,a)) ∼ D sampled over the
entire dataset. The batches used for both the policy and
reward function updates are composed of a balanced ratio of
online-to-offline samples which more aggressively updates
the policy than uniform sampling. The ratio is initially set
to 0 and linearly increased to 1 so each batch contains only
online samples by a specified number of steps. For the expert
policy and reward function updates, we increase the ratio
to 1 in 25 steps. For the gating network, we increase the
ratio more slowly over 100 steps to preserve exploration and
reduce the risk of prematurely converging to a sub-optimal
strategy.

V. EVALUATION

A. Simulation Setup
The simulated marble run environment is built in Box2D1

using 2D models of the real marble run tracks extracted
from RGB images. The physical parameters (coefficient of
restitution, friction, and gravity are optimized to match data
from the real system. The ball’s initial position and velocity
are assumed fixed but do vary in the real world because
the ball’s diameter does not match the diameter of the
launching tube and its velocity is not explicitly controlled.
Noise is added to the ball’s initial state to reflect this
stochasticity. For some experiments, we add an additional
horizontal gravitation force which acts like wind to represent
a shift in dynamics from the training environment to the test
environment. We add this force in the same direction that
the ball rolls off the rectangular track to prevent cases where
wind slows the ball to a stop and the task become unsolvable.

B. Metrics
The average success rate of a policy is used as a per-

formance metric. The success rate refers to the number of
1https://box2d.org/



(a) (b)

Fig. 3: (a) Solution probabilities per task estimated over 10,000 random actions in simulation. Tasks increase in difficulty
from left to right. (b) Success rate distribution of actions with success rate > 0 out of 10,000 randomly sampled actions.
Results are shown for 5 test tasks, sorted in order of increasing difficulty. The width at each point corresponds to the
proportion of occurrences with a success rate of that value. Results are also shown for different simulation dynamics where
we apply a horizontal wind-like force in the same direction the ball rolls off the initial rectangular track. Depending on the
environment dynamics, it may be more difficult to find actions with high success rates for some tasks.

successful trials out of 6 taken for each action. We find
aggregating performance across tasks computed using the
arithmetic mean can be dominated by outlier tasks (i.e. very
easy or very difficult tasks), making it difficult to differentiate
performance across different conditions. We use the inter-
quartile mean (IQM), which is less sensitive to outliers and
stratified bootstrap confidence intervals to report aggregate
performance [22].

C. Task Dataset Generation

We randomly generate 100 marble run tasks with varying
initial configurations of a long rectangular track and a U-
shaped goal. The objective is to place a curved track so the
ball lands in the goal. On the real system, the ball is dropped
through a fixed tube so we assume its mean initial position
and velocity are the same for every task. The rectangular
track is placed near the tube to catch the ball, but varies
slightly in x, y, and θ. The goal position is more varied,
where the range of x nearly spans the environment width, the
range of y spans the region below the rectangular track, and
its angle is always 0. We use task generation scripts from
the PHYRE code-base to ensure tasks are non-trivial and
sufficiently diverse [2]. The tasks are split into 80 training,
10 validation, and 10 test tasks.

Difficulty of Marble Run Tasks. We evaluate task dif-
ficulty using the stochastic simulation environment by esti-
mating the solution probability for each task as the average
success rate of 10,000 randomly sampled actions. The solu-
tion probabilities shown in Fig. 3a demonstrate that difficulty
varies significantly across tasks, with some requiring more
than 10,000 actions before finding a solution with random
sampling alone.

The average success rate that can be achieved for each
task depends on the environment dynamics and may be
considerably less than 1 on difficult tasks, which is shown
in Fig. 3b. When a wind-like force is introduced in the
environment, lower success rates under shifted dynamics
indicate some tasks are more difficult to solve. If finding
actions with success rates of 1 is possible, such actions may
be rare, difficult to reproduce, or occur by chance. Estimating

the success rate with more than 6 trials per action would
reduce the occurrence of finding high success rate actions
by chance, but with increased run-time.

D. Method Comparisons

Offline Mixture of Experts [Offline]: We evaluate the
mixture of experts policy’s performance after training offline
on the simulated dataset, as described in Section IV-C. The
average success rate after evaluating 20 actions sampled from
the mixture policy on the test tasks is reported. For each
evaluation step, we sample a policy from the categorical
distribution over policies (i.e. the gating network) and use
the mean of the selected policy as the action to evaluate.
Online Mixture of Experts [Online]: The mixture of
experts policy is updated with online learning, as described
in Section IV-D, by attempting 100 actions and updating
the policy after each attempt. Every 5 attempts, we take an
additional evaluation action using the mean of the sampled
policy and record the performance. The evaluation steps
are used only to report performance and are not used to
update the policy. Simulation Performance Baseline [Sim
Baseline]: As a performance baseline for simulation-based
experiments, we rank 10,000 randomly sampled actions
for each test task using a perfect model of the evaluation
environment (i.e. the simulator). The average success rate of
the top 5 actions ranked by the model is reported. As the
number of sampled actions approaches infinity, the baseline
performance would represent the best performance that could
possibly be achieved on the test tasks. The baseline’s reported
performance may be lower than the true best performance be-
cause it is limited to ranking 10,000 actions per task. Single
Gaussian Policy [Single]: To emphasize the importance of
representing multiple strategies, we compare the MoE policy
performance to that of a single Gaussian policy trained using
the same procedures as in Sections IV-C and IV-D, except
only a single policy is used so no gating policy is learned.

E. Simulation Experiments

In Fig. 4, we show the Online learning performance in
simulation (Fig. 4a) and simulation with different dynamics



Online Offline Online (Single) Offline (Single) Sim Baseline

0 25 50 75 100
Number of Attempts

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Su
cc

es
s R

at
e

0 1 2 3 4 5 6 7 8 9
Task Index

0.0

0.2

0.4

0.6

0.8

1.0

(a) Simulation

0 25 50 75 100
Number of Attempts

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Su
cc

es
s R

at
e

0 1 2 3 4 5 6 7 8 9
Task Index

0.0

0.2

0.4

0.6

0.8

1.0

(b) Shifted Dynamics

Fig. 4: Online learning performance in (a) simulation and (b) simulation with different dynamics than the offline dataset.
Average success rate vs. number of attempts (per task) is shown for the evaluation steps taken every 5 attempts during online
learning. The average success rate over all evaluation steps is also shown for each task.

than the offline dataset (Fig. 4b). For each simulation envi-
ronment, we plot the average success rate of the evaluation
steps taken every 5 attempts during online learning. Addi-
tionally, we show the average success rate computed over all
evaluation steps for each task.

When the dynamics of the test environment match the dy-
namics of the training environment, the performance gained
by representing multiple strategies is less pronounced. The
offline performance of the Gaussian policy falls slightly be-
low the MoE policy, likely due the Gaussian policy averaging
over multiple solution regions which may include pockets
of lower reward regions in between them. The MoE policy
can represent distinct solution regions as separate policies
which allows the policies to fit more closely to the high
reward regions and thus converge more quickly during online
learning.

The benefits of representing multiple strategies are more
easily observed when the dynamics of the test environment
do not match the dynamics of the training environment, as in
Fig. 4b. At the start of convergence, after around 25 attempts,
the MoE continues to increase beyond the performance of
the single Gaussian policy. This indicates that the MoE
policy is more capable of escaping local optima by switching
between different candidate solutions. Escaping local optima
is especially important under different dynamics, because
the best strategies for a task will change depending on the
dynamics. The relative robustness of the MoE policy to
shifts in dynamics is further evidenced by the offline policy
performance which is less affected by the shifted dynamics
than the single Gaussian policy.

For additional videos and results, please visit
https://sites.google.com/view/learning-strategies
-icra2023/home.

F. Real-World Experiments
Fig. 5a shows offline and online MoE policy performance

on the real system, evaluated on a random subset of 5 test
tasks. We also limit online learning to just 60 attempts to
reduce run-time. Despite the mismatched dynamics between
the simulation environment and the real world, the MoE
policy achieves an average success rate just over 0.8 within a

Online Offline Human Baseline

0 20 40 60
Number of Attempts

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 S
uc

ce
ss

 R
at

e

(a) Real World

0 20 40 60
Number of Attempts

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 S
uc

ce
ss

 R
at

e

(b) Test Task 7

Fig. 5: (a) Online learning performance in the real world
evaluated on a subset of 5 test tasks. (b) Comparison to
human performance for a single test task.

few dozen attempts, which is consistent with the simulation
results. In Fig. 5b, we compare the performance of the MoE
policy to the human performance from Fig. 2 which was
evaluated on test task 7. We plot the average performance
from the last 5 attempts as the human baseline. The MoE
policy starts off with around the same performance as the
human baseline, but eventually exceeds human performance.
By the end of online learning, the average performance of the
MoE policy is hovering between 0.7 and 1 so the asymptotic
performance is likely in the range of 0.8-0.9 for that task.

VI. CONCLUSIONS

We present a method using a mixture of experts policy
to represent multiple strategies for solving marble run tasks.
Our experiments demonstrate that, even when trained offline
on simulated data, online learning quickly adapts the policy
to solve new marble run tasks in the real world. Finally, by
developing a robot system to evaluate the proposed approach
on real-world marble run tasks, this work emphasizes the
importance of enabling experimental evaluation in domains
that involve complex dynamic interactions in the physical
world.

REFERENCES

[1] K. R. Allen, K. A. Smith, and J. B. Tenenbaum, “Rapid trial-and-error
learning with simulation supports flexible tool use and physical
reasoning,” Proceedings of the National Academy of Sciences,



vol. 117, no. 47, pp. 29 302–29 310, 2020. [Online]. Available:
https://www.pnas.org/content/117/47/29302

[2] A. Bakhtin, L. van der Maaten, J. Johnson, L. Gustafson, and R. Gir-
shick, “Phyre: A new benchmark for physical reasoning,” in Advances
in Neural Information Processing Systems, vol. 32, 2019.

[3] X. B. Peng, A. Kumar, G. Zhang, and S. Levine, “Advantage-weighted
regression: Simple and scalable off-policy reinforcement learning,”
arXiv preprint arXiv:1910.00177, 2019.

[4] A. Nair, M. Dalal, A. Gupta, and S. Levine, “Accelerating online rein-
forcement learning with offline datasets,” CoRR, vol. abs/2006.09359,
2020. [Online]. Available: https://arxiv.org/abs/2006.09359

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, pp. 529–533, 2015.

[6] K. Fragkiadaki, P. Agrawal, S. Levine, and J. Malik, “Learning visual
predictive models of physics for playing billiards,” in ICLR, 2016.

[7] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei,
C. Lawrence Zitnick, and R. Girshick, “Clevr: A diagnostic dataset
for compositional language and elementary visual reasoning,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017.

[8] R. Girdhar and D. Ramanan, “CATER: A diagnostic
dataset for compositional actions and temporal reasoning,”
CoRR, vol. abs/1910.04744, 2019. [Online]. Available:
http://arxiv.org/abs/1910.04744

[9] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine,
“Learning to poke by poking: Experiential learning of intuitive
physics,” CoRR, vol. abs/1606.07419, 2016. [Online]. Available:
http://arxiv.org/abs/1606.07419

[10] A. Ajay, M. Bauza, J. Wu, N. Fazeli, J. B. Tenenbaum, A. Rodriguez,
and L. P. Kaelbling, “Combining Physical Simulators and Object-
Based Networks for Control,” in IEEE International Conference on
Robotics and Automation (ICRA), 2019.

[11] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, “Toss-

ingbot: Learning to throw arbitrary objects with residual physics,” in
Proceedings of Robotics: Science and Systems (RSS), 2019.

[12] G. Neumann and J. Peters, “Fitted q-iteration by advantage weighted
regression,” in Advances in Neural Information Processing Systems,
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, Eds., vol. 21.
Curran Associates, Inc., 2009.

[13] J. Peters, K. Mulling, and Y. Altun, “Relative entropy policy search,”
in Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

[14] A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess,
and M. Riedmiller, “Maximum a posteriori policy optimisation,”
in International Conference on Learning Representations, 2018.
[Online]. Available: https://openreview.net/forum?id=S1ANxQW0b

[15] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning,”
Artificial intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[16] P.-L. Bacon, J. Harb, and D. Precup, “The option-critic architecture,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31,
no. 1, 2017.

[17] S. E. Yuksel, J. N. Wilson, and P. D. Gader, “Twenty years of mixture
of experts,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 23, no. 8, pp. 1177–1193, 2012.

[18] C. Daniel, G. Neumann, O. Kroemer, and J. Peters, “Hierarchical
relative entropy policy search,” Journal of Machine Learning
Research, vol. 17, no. 93, pp. 1–50, 2016. [Online]. Available:
http://jmlr.org/papers/v17/15-188.html

[19] M. Wulfmeier, A. Abdolmaleki, R. Hafner, J. T. Springenberg,
M. Neunert, T. Hertweck, T. Lampe, N. Y. Siegel, N. Heess, and M. A.
Riedmiller, “Compositional transfer in hierarchical reinforcement
learning,” in Robotics Science and Systems, 2020. [Online]. Available:
https://roboticsconference.org/2020/program/papers/54.html

[20] S.-K. Ng and G. McLachlan, “Using the em algorithm to train
neural networks: misconceptions and a new algorithm for multiclass
classification,” IEEE Transactions on Neural Networks, vol. 15, no. 3,
pp. 738–749, 2004.

[21] R. M. Neal and G. E. Hinton, “A view of the em algorithm that justifies
incremental, sparse, and other variants,” in Learning in Graphical
Models, 1998.



[22] R. Agarwal, M. Schwarzer, P. S. Castro, A. Courville, and M. G.
Bellemare, “Deep reinforcement learning at the edge of the statistical
precipice,” Advances in Neural Information Processing Systems, 2021.


