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Abstract

Tasks involving locally unstable or discontinuous dynamics (such as bi-
furcations and collisions) remain challenging in robotics, because small
variations in the environment can have a significant impact on task out-
comes. In this thesis, we present a robot system that we developed to
evaluate learning algorithms on real-world physical problem solving tasks
which incorporate these challenges. For such tasks, learning a single
deterministic policy that is robust to slight or imperceptible changes in
environment state and dynamics is difficult. Learning such a policy from
scratch on the real robot can also be prohibitively expensive. We provide
a framework for learning structured exploration policies in simulation
based on a mixture of experts (MoE) policy representation. We also
present a method for efficiently adapting the policy in the real world. The
mixture of experts policy is composed of stochastic sub-policies that allow
exploration of multiple distinct regions of the action space (or strategies)
and a high-level selection policy to guide exploration towards the most
promising regions. We demonstrate that representing multiple strategies
promotes efficient adaptation in new environments and strategies learned
under different dynamics can still provide useful information about where
to look for good solutions.
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Chapter 1

Introduction

1.1 Motivation

Developing intelligent systems with the efficient and flexible physical reasoning

capabilities of humans remains one of the greatest challenges in robotics. One limiting

factor is that contact is challenging to leverage and controlling the discontinuous

behaviors of colliding objects remains incredibly difficult [21, 26]. Impacts among

robots and their surroundings are particularly difficult to model because slight

inaccuracies in either initial conditions or model parameters can generate vastly

different predictions, even over a small time horizon [4]. These properties can

cause significant problems for controlling real-world systems where noisy sensor

measurements produce small, possibly unobservable, variations in the environment

that have a significant impact on task outcomes.

We are inspired by prior work that proposes simulation-based mechanical puzzles

as benchmarks for physical reasoning [6, 8]. These puzzles often involve locally

unstable and discontinuous dynamics, emphasizing collisions as multiple objects

move and interact over extended periods of time. Unlike most tasks addressed using

reinforcement learning, actions can only be taken at the start of the task (setting

the initial configuration of objects). There is no possibility of further control or

re-planning after the objects start to move, so success depends on reasoning about the

task outcome based on the initial state. While effective for evaluating general-purpose,

long-term physical reasoning, simulation-based benchmarks neglect properties of real-
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1. Introduction

world systems such as noisy observations and environment stochasticity that make

reasoning difficult.

1.2 Thesis Contributions

One contribution of this work is the development of a robot system to enable evaluation

of learning algorithms in a real-world marble run environment which incorporates

both locally unstable or discontinuous dynamics as well as properties of real-world

systems that make reasoning difficult. Allowing actions only at the beginning of the

task, marble run tasks are similar to simulation-based physical reasoning benchmarks

but also incorporate stochasticity which can cause varying outcomes for even the

same initial state. Additionally, while our robot runs hundreds of trials without

human intervention, it can take up to a minute to setup and execute a single trial,

so learning algorithms evaluated in this domain must perform well under a limited

evaluation budget. We provide a framework for learning structured exploration

policies in simulation based on a mixture of experts (MoE) policy representation and

a method for efficiently adapting the mixture of experts policy in the real world. We

demonstrate that representing multiple strategies promotes efficient adaptation in

new environments and strategies learned under different dynamics can still provide

useful information about where to look for good strategies.
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Chapter 2

The Marble Run Environment

In this chapter, we introduce the marble run environment including our procedure

for designing and generating the marble run tasks and an overview of the real-world

system, shown in Fig. 2.1. To emphasize the challenges associated with this domain,

we evaluate how difficult our marble run tasks are to solve in simulation using

randomly selected actions. With a small number of human participants, we also asses

how difficult marble run tasks are for humans to solve in the real world.

2.1 Related Work

Many environments for learning physical reasoning have been explored, ranging from

physics-based computer games [10, 15] to physical reasoning benchmarks [6, 8, 11,

13]. For evaluating real-world physical reasoning capabilities beyond prediction and

question answering, the most common application is contact-rich manipulation tasks

[3, 5, 29]. In these domains robots usually take actions and receive feedback at every

time-step, which allows re-planning throughout a task and reduces the effects of

uncertainty or error. The simulation-based physical reasoning environments Tools [6]

and PHYRE [8] allow actions only at the start of a task and are effective benchmarks

for general-purpose, long-term physical reasoning. Both PHYRE and Tools define

tasks similar to marble run tasks, which all require placing an object in a scene so it

interacts with other objects to reach a desired goal state. Unlike the tasks in PHYRE

and Tools, our real-world marble run tasks incorporate challenges of the real world

3



2. The Marble Run Environment

Figure 2.1: The marble run robot autonomously evaluates learning algorithms on
real-world marble run tasks. (a-b) An example marble run task (a) and solution (b),
where the goal is to place the curved track so the ball lands in the U-shaped goal.
Stochasticity of the ball’s initial state leads to large variations in outcome for the
same action.

including noisy observations and environment stochasticity.

2.2 Task Design and Generation

We focus on the problem of placing an additional track in an existing configuration so

that the ball lands in the goal. A marble run task is defined by the initial configuration

of all objects in the scene, including the ball, goal, and additional track pieces. In

the initial configuration, a ball released at the top of the environment above the

rectangular track will miss the goal, as shown in Fig. 2.1a. The robot must then

find a configuration of the curved track that allows the ball to land in the goal. An

example of one such configuration is shown in Fig. 2.1b.
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2. The Marble Run Environment

2.2.1 Problem Definition

The marble run environment frame is defined as a 800 mm × 700 mm square that is

co-planar with robot’s back panel, as shown in Fig. 2.2b. The full 3D state of the

environment is not observable, so we approximate the environment as 2D and ignore

small out-of-plane movement. There are not physical barriers to keep the ball within

the environment limits, but the ball’s position is not tracked outside of the limits.

With tracks magnetically attached to a panel, only the ball is considered dynamic.

The state s is the initial scene configuration, which concatenates each object’s x, y

position and orientation expressed as [sin(θ), cos(θ)]. Object positions are computed

relative to the ball’s initial position, which is fixed across tasks and therefore not

included in the state. We consider tasks with the same number and types of objects

so it is not necessary to include object type in the state. The action a is the x, y

position and orientation of the single moved track piece. If different types of objects

could be placed, the object type should also be included in the action. For now, we

consider only one object type for the action.

Reward Function

The reward function for a single trial is

R(s, a) =

1, if success

−dmin, otherwise
(2.1)

where dmin is the minimum distance between the ball and the goal along the ball’s

trajectory. The reward is 1 for successful trials to differentiate between true successes

and trials where the ball bounces out of the goal, where dmin = 0 in both cases.

Uncertainty in the real system’s initial state can cause the outcome to vary significantly

across trials from the same state and action, as in Fig. 2.1b, so the reward is averaged

over 6 trials per action taken in the real world or in a stochastic simulator. We

empirically found 6 trials provides a good trade-off between minimizing evaluation

time and minimizing variance.
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2. The Marble Run Environment

2.2.2 Task Generation

We randomly generate marble run tasks with varying initial configurations of a long

rectangular track and a U-shaped goal. The objective is to place a curved track so

the ball lands in the goal. On the real system, the ball is dropped through a fixed

tube so we assume its mean initial position and velocity are the same for every task.

The rectangular track is placed near the tube to catch the ball, but varies slightly in

x, y, and θ. The goal position is more varied, where the range of x nearly spans the

environment width, the range of y spans the region below the rectangular track, and

its angle is always 0.

We leverage the task generation scripts from the PHYRE framework [8] to ensure

that the sampled tasks (1) have a stable solution (solution that still solves the task

if the action is slightly perturbed by ± 0.5 mm along each axis), (2) are solvable

(probability of finding stable solutions among randomly sampled actions exceeds 10−5)

and not trivially solved (probability of finding stable solutions is less than 0.5), and

(3) have sufficiently diverse solutions (out of the set of possible tasks, tasks with

solutions that also solve to over 30% of the other tasks are discarded). We generate a

total of 100 tasks that meet these criteria in the simulated environment. The tasks

are split into 80 training, 10 validation, and 10 test tasks.

2.3 Real-World System

We designed a custom 4-axis CNC system, which can move in x, y, z, and rotate a

suction gripper around z, as the base of our robot. Notably, our system, shown in Fig.

2.2a, consists of low-cost and easily accessible components including the cameras.

2.3.1 Low-Level Control

We use two Raspberry Pi’s, each equipped with Protoneer’s Raspberry Pi CNC shield,

to interface with the CNC stepper motors. The CNC shields handle low-level control

of the motors via an on-board Arduino chip running GRBL. GRBL is a open-source

software for controlling CNC machines by executing G-code commands read from a

file, like a CAD design converted to G-code for 3D printers, or received directly from
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2. The Marble Run Environment

another computer, as is the case in our system.

2.3.2 Vision System and Calibration

The vision system consists of two front-view cameras and a gripper mounted camera.

One of the front-view cameras and the gripper mounted cameras are Raspberry Pi HQ

cameras, which are used to detect and localize the tracks throughout robot operation.

The front-view Raspberry Pi cameras supplies images at 1920× 1080 resolution and

30 frames per second, while the gripper camera supplies images at 640 × 480 also

at 30 frames per second. We use a GoPro Hero10 as the second front-view camera

for high-speed tracking of the ball which records each trial at 4k resolution and 120

frames per second. We scale the video down to 960× 540 for post-processing.

AprilTags [14, 20, 25] mounted on the back panel are used to calibrate the cameras

to the coordinate frames of the robot and the marble run environment. The x and

y axes of the robot frame are parallel to the x and y axes of the environment, but

the robot’s frame is offset from the environment frame along the z axis. The 2D

environment plane is co-planar with the back panel of the robot. AprilTags marking

the four corners of the back panel are used to remove perspective distortion from the

camera images, aligning the image planes to the environment plane. The x, y axes of

the robot, environment, and image frames are aligned using the 5th AprilTag on the

back panel whose center marks the zero point of the environment frame, shown in

Fig. 2.2b. Pose estimation with AprilTags is less accurate from farther distances so

the front-view Raspberry Pi camera provides an initial estimate of the track poses

using the AprilTags located on each track piece. With this initial pose estimate, the

robot’s gripper can get close enough to a track for its AprilTag to come into view of

the gripper camera and a more precise estimate of the track pose is obtained with

visual servoing to align the AprilTag to the center of the gripper camera.

2.3.3 Ball Launcher

Balls are held in the bucket mounted directly above the back panel of environment.

Balls are dropped one-at-a-time through a tube into to the environment when a hole

in the rotating plate at the base of the bucket aligns with the opening of the tube.

When the break-beam sensor at the top of the tube detects a ball, the rotating plate

7



2. The Marble Run Environment

Front-View Cameras

Gripper
Camera

Ball Launcher (Top View)

drops down 
to launch 

tube

(a) Hardware Setup

800 mm

700 m
m

x

y

(b) Marble Run Environment Frame

Figure 2.2: (a) Hardware setup for the marble run robot. (b) The marble run
environment frame is a 800 mm × 700 mm square that is co-planar with robot’s back
panel.
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2. The Marble Run Environment

is stopped so that only one ball is released. The box at the bottom of the back panel

collects the majority of balls that would otherwise fall to the floor below the robot.

With this design, our robot can run hundreds of trials without human intervention

before the bucket runs out of balls and a human must re-fill the bucket. While we

only had 500 hundred balls available for our experiments, the bucket can hold closer

to 1000 balls at full-capacity.

2.4 Simulation Environment

The simulated marble run environment is built in Box2D (box2d.org) using 2D models

of the real marble run tracks extracted from RGB images. The physical parameters

(coefficient of restitution, friction, and gravity) are optimized to match data from

the real system. The ball’s initial position and velocity are assumed fixed but do

vary in the real world because the ball’s diameter does not match the diameter of the

launching tube and its velocity is not explicitly controlled. Noise is added to the ball’s

initial state to reflect this stochasticity. Specifically, we initialize the ball’s initial

position and velocity in the simulator by sampling from a normal distribution where

the mean and standard deviation are measured from 50 trials on the real system.

For some experiments, we add an additional horizontal gravitation force which

acts like wind to represent a shift in dynamics from the training environment to the

test environment. We add this force in the same direction that the ball rolls off the

rectangular track to prevent cases where wind slows the ball to a stop and the task

become unsolvable.

2.5 Evaluation of Marble Run Tasks

2.5.1 Difficulty of Marble Run Tasks in Simulation

We evaluate task difficulty using the stochastic simulation environment by estimating

the solution probability for each task as the average success rate of 10,000 randomly

sampled actions. The solution probabilities shown in Fig. 2.3a demonstrate varying

difficulty across tasks, with some requiring more than 10,000 actions before finding a

solution with random sampling alone.

9
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2. The Marble Run Environment

(a)

(b)

Figure 2.3: (a) Solution probabilities per task estimated over 10,000 random actions in
simulation. Tasks increase in difficulty from left to right. (b) Success rate distribution
of actions with success rate > 0 out of 10,000 randomly sampled actions. Results
are shown for 5 test tasks, sorted in order of increasing difficulty. The width at each
point corresponds to the proportion of occurrences with a success rate of that value.
Results are also shown for different simulation dynamics (shifted) where we apply a
horizontal wind-like force in the same direction the ball rolls off the initial rectangular
track. Depending on the environment dynamics, it may be more difficult to find
actions with high success rates for some tasks.

The average success rate that can be achieved for each task depends on the

environment dynamics and may be considerably less than 1 on difficult tasks, which

is shown in Fig. 2.3b. When a wind-like force is introduced in the environment, lower

success rates under shifted dynamics indicate some tasks are more difficult to solve.

If finding actions with success rates of 1 is possible, such actions may be rare, difficult

10
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Figure 2.4: Average performance of 5 humans on a marble run task over 10 attempts.

to reproduce, or occur by chance. Estimating the success rate with more than 6 trials

per action would reduce the occurrence of finding high success rate actions by chance,

but with increased run-time.

2.5.2 Human Performance on Real-World Marble Run

Tasks

While this task appears easy given that many humans could find a solution within

just a few attempts, Fig. 2.1b shows that, due to slight variations in the environment,

an action that is successful once may not be successful every time. Preliminary

experiments demonstrate that even for a simple task, finding solutions that are

robust to stochasticity in the environment is challenging even for humans. Fig. 2.4

shows the average performance of 5 humans who were asked to make 10 attempts

to solve a marble run task. Initially, all participants were able to find actions

that were somewhat successful. Small adjustments to the initial object placement

usually produced slightly improved performance, but nearly all participants eventually

required switching strategies with more drastic changes to the object placement or

angle in order to find more robust actions. We task the robot with finding actions

that are always or nearly always successful, rather than just finding actions that

worked once.

11



Chapter 3

Learning Exploration Strategies

from Simulated Experiences

Due to small changes having major effects on task outcome and the real time duration

of marble run tasks, we focus on learning a structured exploration policy in simulation

that can be efficiently adapted in the real world. Directly learning a deterministic

policy is difficult due to this parameter sensitivity and the sim-to-real gap. We choose

a policy representation that is stochastic to support exploration and captures multiple

types of solutions in case the strategy that is optimal in simulation is not applicable in

the real world. Specifically, we use a mixture of experts (MoE) policy representation

that is composed of multiple Gaussian sub-policies and a high-level selection policy

and represents multiple strategies to achieve the same or similar goals. Our proposed

approach extends advantage-weighted regression [16, 22] to train a mixture of experts

policy from simulated experiences. While we do not expect the mixture policy trained

offline in simulation to transfer perfectly to the real world, it should provide a good

starting point to perform an online search for solutions, which is described in more

detail in Chapter 4.

3.1 Related Work

We extend advantage-weighted regression (AWR) to mixture of expert policies. AWR

formulates a constrained policy search problem as weighted supervised regression

12



3. Learning Exploration Strategies from Simulated Experiences

on the actions, allowing the policy to be easily updated with both online data and

offline data [16, 22]. An earlier instantiation of this framework incorporated a similar

advantage-weighted policy update [18]. Relative entropy policy search (REPS) [23]

and maximum a posteriori policy optimization (MPO) [1] are closely related and

similarly derived as a constrained policy search, but using the dual formulation for

optimizing constrained objective functions.

Policy hierarchies in robot learning are often represented as options, which are

temporally extended actions [7, 24]. In our work, actions are only applied at the

start of the task and options become a set of initial actions which we represent as a

mixture of experts [28]. Hierarchical extensions to both REPS and MPO have been

developed [9, 27] and our approach is similar reflecting the underlying similarities

between REPS, MPO, and AWR. They focus on learning hierarchies incrementally

from scratch which is hard and requires imposing additional constraints to learn

distinct and diverse sub-policies. We formulate the problem in a simpler way by

assuming access to a datatset of prior experiences to initialize the mixture policy using

batched supervised regression. We show that a simulator generates useful training

data in this domain to learn the mixture distribution’s underlying structure, while

online learning adapts the sub-policies and distribution over policies to a specific task

or environment.

3.2 Mixture of Experts (MoE) Policy

Representation

To represent knowledge learned from past experiences, we learn a stochastic policy

parameterized as a probabilistic mixture of experts (MoE) that maps an input state

to a multi-modal distribution of actions. The MoE consists of K Gaussian “expert”

policies {πk}∀k∈{1,...,K} and a “gating” policy ψ that predicts a categorical distribution

over the experts such that

k ∼ Categorical(ψ(k|s,ϕ)) (3.1)

a ∼ πk(a|s,θk), (3.2)

13



3. Learning Exploration Strategies from Simulated Experiences

where ϕ and θk are learned parameters for the neural networks representing ψ and

πk. k is the expert model index sampled from the categorical distribution predicted

by ψ and a is the action sampled from the Gaussian distribution with mean µk and

covariance Σk represented by θk.

3.3 Expectation Maximization for Mixture of

Experts Policies

We derive a training procedure from the expectation maximization (EM) algorithm

[19]. The EM algorithm estimates the parameters ϕ and θ = {θk}k∈1:K that maximize

the complete log-likelihood of the selection variables {zk} and actions a given the

state s. The selection variable zk is 1 if the kth expert generates or predicts the action

a and 0 otherwise. The E-step calculates the expected log-likelihood, given as J(ϕ,θ)

below, where w′
k is the probability zk is one given the state and action.

J(ϕ,θ) = E
s,a∼D

[
K∑
k=1

w′
k

(
log πk(a|s,θk) + logψk(s,ϕ)

)]
(3.3)

w′
k = P (zk = 1|s, a) = ψk(s,ϕ

′)πk(a|s,θ′k)∑K
j=1 ψj(s,ϕ

′)πj(a|s,θ′j)
(3.4)

The superscript ′ indicates wk is computed using the current parameter estimates

and is not involved in the gradient calculation. In the standard EM algorithm, the

M-step analytically computes parameters which maximize J(ϕ,θ). There is not a

closed-form solution when ψ and πk are neural networks with non-linear activations

as in this work so we instead use a generalized EM algorithm, where the M-step

performs a gradient step to move J(ϕ,θ) closer to the maximum [17].

14



3. Learning Exploration Strategies from Simulated Experiences

3.4 Advantage-Weighted Regression for Mixture

of Experts Policies

Using the mixture log-likelihood in (3.3), we apply advantage-weighted regression

(AWR), which weights the log-likelihood with the exponential advantage exp(A
π(s,a)
η

)

[16, 18, 22]. The advantage Aπ(s, a) = R(s, a)− V π(s) is a measure of improvement

based on how the reward of an action compares to the average reward observed from a

state under the current policy. When the advantage is negative, the weights approach

zero and filter out poorly performing actions. The resulting advantage-weighted

objective function is

J(ϕ,θ) = E
s,a∼D

[
K∑
k=1

w′
k exp

(
Aπ

′
k(s, a)

η

)(
log πk(a|s,θk) + logψk(s,ϕ)

)]
, (3.5)

where η is a Lagrange multiplier associated with constraining the policy to stay close

to the behavior policy πβ that represents the distribution of data seen so far. Dual

gradient descent can be used to estimate η, but this requires estimating πβ from the

data [27]. We treat η as a fixed hyperparameter, which has been effective in prior

work [16, 22]. In marble run tasks, the final episode reward is observed immediately

after taking each action, so the value function is the average reward of actions sampled

from the current policy at a specified state. During offline training, we pre-compute

the per-state values as the average reward of actions observed in the dataset at each

state.

3.5 Summary of Offline Learning Algorithm

We generate a dataset of prior experiences using the simulated marble run environment

by randomly sampling actions on a set of training tasks until 500 successful and

unsuccessful actions are found for each task. Each sample is stored in the dataset

D as a state-action-reward tuple (s,a, R(s,a)). In algorithm 1, we summarize the

procedure to train the mixture of experts policy from this dataset of simulated

experiments.
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3. Learning Exploration Strategies from Simulated Experiences

Algorithm 1: Offline Learning from Simuated Experiments

Input: Offline dataset D
// Train MoE policy

for each epoch do

for batch in D do

// Do soft policy update (Eq. 3.5)

for each policy k do

θk ← θk + α∇θk
J(ϕ,θ)

ϕ← ϕ+ α∇ϕJ(ϕ,θ)

// Sort samples into subsets according to w′
k (Eq. 3.4)

{D1, . . . ,DK} ← D
// Train reward functions

for each epoch do

for each policy k do

for batch in Dk do

ωk ← ωk − α∇ωk
LMSE(ωk)

Return: ϕ, {θ1, . . . ,θK}, {ω1, . . . ,ωK}, {D1, . . . ,DK}
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Chapter 4

Adapting Exploration Strategies to

the Real World with Online

Learning

The mixture policy trained offline in simulation represents prior knowledge about

what strategies might work well in different contexts. When new environments or

task configurations are encountered, the offline policy is a starting point from which

to perform an online search for robust solutions in the current context. The expert

policies represent promising regions of the action space to explore and the gating

network, which is responsible for selecting which expert policy to use, directs the

search towards high-reward regions. Our experiments show that online learning

successfully fine-tunes the mixture of experts policy within a few dozen attempts

in the real world and even exceeds human performance on a test task. Our results

demonstrate that representing multiple strategies promotes efficient adaptation in

new environments. Strategies learned in simulation or under different dynamics can

still provide useful information about where to look for solutions.
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4. Adapting Exploration Strategies to the Real World with Online Learning

4.1 Decomposing the Objective Function with

Hard Policy Updates

As a supervised learning algorithm, advantage-weighted regression is easily adapted

to online learning by incorporating online samples into policy updates. The objective

function defined in (3.5) requires indiscriminately optimizing all sub-policies over

batches sampled across the entire dataset with each update step, where samples are

weighted according to responsibilities w′
k. This soft policy update shares information

between policies and is important during early stages of training to learn a better

division of the state space. We empirically observe that after pre-training the above

soft updates become less effective during online learning. We assume this is because

a locally optimal division of the state space is learned during pre-training.

To compensate for the declining effectiveness of soft updates, we perform hard

policy updates during online learning by updating expert policies independently using

only data associated with each policy. Performing policy updates using only the most

relevant samples helps sub-policies quickly specialize to the current task.

The individual update rules can be derived by setting w′
k to 0 or 1 in (3.5), where

1 is assigned to the component with the highest probability P (zk = 1|s,a). We

decompose (3.5) into separate objective functions for the gating policy and each

expert policy. The objective function for policy k is

J(θk) = E
s,a∼Dk

[
exp

(
Aπ

′
k(s, a)

η

)
log πk(a|s,θk)

]
, (4.1)

where Dk is a subset of the dataset generated by or associated with the kth policy.

We also decompose the advantage function. The advantage function for the kth policy

is defined as Aπ
′
k(s, a) = Rωk

(s, a)− Ea∼π′
k
[Rωk

(s, a)]. Similarly, the gating policy’s

objective function is

J(ψ) = E
s,k∼D

[
exp

(
Aψ

′
(s, k)

η

)
logψk(s,ϕ)

]
, (4.2)

and its advantage function is Aψ
′
(s, k) = Ea∼π′

k
[Rωk

(s, a)]− Ek∼ψ′ [Ea∼π′
k
[Rωk

(s, a)]].

The gating policy’s advantage function provides an estimate of how actions from
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4. Adapting Exploration Strategies to the Real World with Online Learning

expert k compare to other experts. A similar advantage function is defined in

hierarchical reinforcement learning as the advantage over options for determining

option termination criteria [7].

4.2 Learning an Approximate Reward Function

During online learning, the advantage is estimated using learned reward functions.

Learning a single function to approximate a multi-modal, discontinuous reward

function is difficult, so different learned reward functions are associated with each

expert policy. Each approximate reward function Rωk
(s, a) is trained using only data

generated by the associated expert. During offline training of the policy, the best

divisions of the state-action space are not yet known, so we estimate the advantage

directly from sampled rewards to avoid bias. After the mixture policy is trained

offline, we perform a hard assignment of samples to the most likely policy indicated by

responsibilities w′
k and Rωk

(s, a) is pre-trained over the corresponding subset of data,

Dk, by minimizing the mean-squared-error (MSE) between predicted and observed

rewards. An equal number of positive and negative samples is used in each update

for both pre-training the reward functions and during online learning. Samples are

considered positive if at least half the trials for the action are successful (i.e. success

rate ≥ 0.5). During online learning, each reward function is updated using both

online and offline samples from the corresponding policy.

4.3 Summary of Online Learning Algorithm

We assume the online learning phase for each new task is initialized with the same

offline policy and dataset. At each iteration of online learning, an expert policy

and action are sampled from the mixture policy (k ∼ ψ, a ∼ πk). The action is

executed and stored in the dataset as a tuple (s,a, k, R(s,a)). The learned reward

function Rωk
(s, a) associated with the current expert k is then updated with a batch

of training points (sk,ak, R(sk,ak)) ∼ Dk containing an even mixture of positive

and negative samples. The policy πk is updated with a batch of training points

(sk,ak, R(sk,ak)) ∼ Dk using (4.1) and the gating policy ψ is updated using (4.2)
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4. Adapting Exploration Strategies to the Real World with Online Learning

with a batch of training points (s, a, k, R(s, a)) ∼ D sampled over the entire dataset.

Algorithm 2: Online Learning

Input: Pretrained parameters ϕ, {θ1, . . . ,θK}, {ω1, . . . ,ωK}, and offline
dataset {D1, . . . ,DK}

for each action attempt do
Sample policy k ∼ Categorical(ψ(k|s,ϕ))
Sample action a ∼ πk(a|s,θk),
Store new sample Dk ← Dk ∪ {(s, a, R(s, a))}
// Update reward function k
for each update step do

Sample batch from Dk // online and offline samples

ωk ← ωk − α∇ωk
LMSE(ωk)

// Update policy k
for each update step do

Sample batch from Dk // online and offline samples

θk ← θk + α∇θk
J(θk) // from Eq. 4.1

// Update gating network

for each update step do
Sample batch from complete dataset D // online and offline

samples

ϕ← ϕ+ α∇ϕJ(ϕ) // from Eq. 4.2

Return: ϕ, {θ1, . . . ,θK}, {ω1, . . . ,ωK}, {D1, . . . ,DK}
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4. Adapting Exploration Strategies to the Real World with Online Learning

4.4 Implementation Details

Network Architecture

The sub-policies, gating network, and reward function are all represented as multi-

layer perceptions (MLP) with 2 hidden layers, where each layer has 256 units and is

followed by ReLU activations. For the sub-policies, the output layer splits into two

heads for the mean and covariance. To estimate the covariance, the network outputs

Cholesky factors A such that Σ = AAT , where A is lower triangular and the diagonals

of A are Aii ← exp(Aii) + ϵ. The Gumbel-Softmax activation, which provides a

differentiable approximation of samples drawn from a categorical distribution [12], is

applied to the output layer of the gating network. All networks are optimized using

the Adam optimizer.

Gumbel-Softmax

The Gumbel-Softmax activation has a temperature parameter τ that adjusts how

closely the expected value of the samples from the Gumbel-Softmax approximate

samples from the categorical distribution. As τ → ∞, the expected value of the

Gumbel-Softmax distribution approaches a uniform distribution, and the expected

value converges to the categorical distribution as τ → ∞. During learning, there

is a trade-off between small temperatures, where samples are closer to one-hot and

the variance of the gradients is large, and large temperatures, where samples are

closer to uniform and the variance of the gradients is small. It is standard practice to

start at a high temperature and gradually decrease the temperature to a small but

non-zero value [12]. We initially set τ to 10 and anneal it to 2.5 throughout offline

training using the schedule τ = max(2.5, τ exp(−rt)) where t is the current epoch

and r controls the annealing rate. During online learning, we keep τ fixed at 2.5.

Advantage Scaling

During offline learning, the advantage scale factor η used for advantage-weighted

regression (Eq. 3.5) is set to 0.1. During online learning, we use hard policy updates

and decompose the advantage function for the gating network and sub-policy updates,
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as shown in Eq.4.2 and 4.1. For the gating network η is set to 0.3 and for sub-policy

updates η is 0.1. We also clip the advantage weights to a maximum value of 100

for the sub-policy updates and and 20 for the gating network updates to prevent

gradients from exploding.

Ratio of Online-to-Offline Samples

The batches used for the policy and reward function updates are composed of a

balanced ratio of online-to-offline samples, providing more aggressive updates than

uniform sampling. The ratio is initially set to 0 and linearly increased to 1 over

N steps, where each batch contains only online samples by the N th step. For the

expert policy and reward function updates, we increase the ratio to 1 over 25 steps.

For the gating network, we increase the ratio more slowly over 100 steps to preserve

exploration and reduce the risk of premature convergence to a sub-optimal strategy.

Additional hyperparameters are provided in Table 4.1.
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Parameter Value

Policy hidden sizes 256-256
Offline learning rate 0.0003
Offline epochs 500
Online learning rate 0.00003
Online update steps (per attempt) 1000
Batch size 1024
Weight decay 0.0001
Number of policies 20

Gating hidden sizes 256-256
Offline learning rate 0.0003
Offline epochs 500
Online learning rate 0.00003
Online update steps (per attempt) 10
Weight decay 0.0001
Batch size 1024
Gumbel softmax temp. (τ) 10
τ anneal rate (r) 0.00003

Reward hidden sizes 256-256
Offline Learning rate 0.0003
Offline epochs 2000
Online Learning rate 0.0003
Online update steps (per attempt) 2000
Batch size 1024
Weight decay 0.0001

Table 4.1: Hyperparameters
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4.5 Evaluation

4.5.1 Metrics

The average success rate is used as a performance metric, where the success rate refers

to the number of successful trials out of 6 taken for each action. We find aggregating

performance across tasks computed using the arithmetic mean can be dominated by

outlier tasks (i.e. very easy or very difficult tasks). We use the inter-quartile mean

(IQM), which is less sensitive to outliers and stratified bootstrap confidence intervals

to report aggregate performance [2].

4.5.2 Method Comparisons

Offline Mixture of Experts [Offline]

We evaluate the mixture of experts policy’s performance after training offline on the

simulated dataset, as described in Section 3.5. Offline performance is reported as the

average success rate of 20 actions sampled from the mixture policy and evaluated on

the test tasks. Actions are selected by sampling an expert policy from the categorical

distribution over policies (i.e. the gating network) and then using the mean of the

sampled policy as the action to evaluate.

Online Mixture of Experts [Online]

The mixture of experts policy is updated with online learning, as described in Section

4.3, by attempting 100 actions and updating the policy after each attempt. Every 5

attempts, we take an additional action to evaluate the mean of the current expert

policy and record the performance. These evaluation actions are used only to report

performance and are not used in the policy update.

Simulation Performance Baseline [Sim Baseline]

As a performance baseline for simulation-based experiments, we rank 10,000 randomly

sampled actions for each test task using a perfect model of the evaluation environment

(i.e. the simulator). The average success rate of the top 5 actions ranked by the
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model is reported. As the number of sampled actions approaches infinity, the baseline

performance would represent the best performance that could possibly be achieved

on the simulated test tasks. The baseline’s reported performance may be lower than

the true best performance because it is limited to ranking 10,000 actions per task.

Single Gaussian Policy [Single]

To emphasize the importance of representing multiple strategies, we compare the

MoE policy performance to that of a single Gaussian policy trained using the same

procedures as in Sections 3.5 and 4.3, except only a single policy is used so no gating

network is learned.

4.5.3 Experiments

Online Learning in Simulation

In Fig. 4.1, we show the average success rate of evaluation steps taken every 5 attempts

during online learning in simulation. The bar charts show the per-task success rates

averaged over all evaluation steps. When the dynamics of the training and test

environments match, the performance gained by representing multiple strategies is

less pronounced. The offline performance of the single Gaussian policy falls slightly

below the MoE policy, likely due to the single Gaussian policy averaging over multiple

solution regions which may include pockets of lower reward regions between them.

The MoE policy can represent distinct solution regions as separate policies which

allows the policies to fit more closely to the high reward regions and converge more

quickly during online learning.

Online Learning in Simulation under Different Dynamics

The benefits of representing multiple strategies are more easily observed when the

dynamics of the test environment do not match the dynamics of the training environ-

ment, as in Fig. 4.2. At the start of convergence, after around 25 attempts, the MoE

continues to increase beyond the performance of the single Gaussian policy. This

indicates that the MoE policy is more capable of escaping local optima by switching

between different candidate solutions. Escaping local optima is especially important
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Figure 4.1: Online learning performance in simulation. Average success rate vs.
number of attempts (per task) is shown for the evaluation steps taken every 5
attempts during online learning. The bar charts show the average success rate over
all evaluation steps for each task.

under different dynamics, because the best strategies for a task will change depending

on the dynamics. The relative robustness of the MoE policy to shifts in dynamics is

further shown by the offline policy performance which is less affected by the shifted

dynamics than the single Gaussian policy.

Online Learning in the Real World

Fig. 4.3a shows offline and online MoE policy performance on the real system,

evaluated on a random subset of 5 test tasks. We also limit online learning to just

60 attempts to reduce run-time. Despite the mismatched dynamics between the

simulation environment and the real world, the MoE policy achieves an average

success rate just over 0.8 within a few dozen attempts, which is consistent with the

simulation results. In Fig. 4.3b, we compare the performance of the MoE policy

to the human performance from Fig. 2.4 which was evaluated on test task 7. We

plot the average performance from the last 5 attempts as the human baseline. The

MoE policy starts off with around the same performance as the human baseline, but

eventually exceeds human performance. By the end of online learning, the average

performance of the MoE policy is hovering between 0.7 and 1 so the asymptotic
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Figure 4.2: Online learning performance in simulation with a wind-like force producing
different dynamics than the offline dataset. Average success rate vs. number of
attempts (per task) is shown for the evaluation steps taken every 5 attempts during
online learning. The bar charts show the average success rate over all evaluation
steps for each task.

performance is likely in the range of 0.8-0.9 for that task.

4.6 Conclusion and Future Work

4.6.1 Summary

We present a method using a mixture of experts policy to represent multiple strategies

for solving marble run tasks. Our experiments demonstrate that, even when trained

offline on simulated data, online learning quickly adapts the policy to solve new marble

run tasks in the real world. Ultimately, we expect that achieving human-level physical

reasoning will require elements of multi-strategy learning. Finally, by developing a

robot system to evaluate the proposed approach on real-world marble run tasks, this

work emphasizes the importance of enabling experimental evaluation in domains that

involve complex dynamic interactions in the physical world.
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Figure 4.3: (a) Online learning performance in the real world evaluated on a subset
of 5 test tasks. (b) Comparison to human performance for a single test task.

4.6.2 Future Work

Although configurations of objects across tasks vary, the marble run tasks are limited

in the types and numbers of objects used and only one action is allowed. Future

work should consider more complex tasks that involve varying types and numbers of

objects and allow multiple sequential actions to be taken. A pixel or graph-based state

representation would provide more informative encoding of object shape and support

varying numbers of objects are present which should aid in generalization across

increasingly complex tasks. Finally, we would like to explore additional domains

which incorporate complex, dynamic interactions and thus are similarly sensitive to

initial conditions and model parameters. Some examples include footstep planning

over challenging terrain or dynamic cooking tasks.
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